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ABSTRACT 

The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency 
components of the surface height errors of an optical surface.  We found it necessary to have a complete, easy-to-use  
approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to 
specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the 
measured surface profile data of the same optic in comparison with those predicted by the simulations during the 
specification-derivation process.  This paper provides a complete mathematical description of PSD error, and proposes a 
new approach in which a 2-dimensional (2D) PSD is converted into a 1-dimensional (1D) one by azimuthally averaging 
the 2D-PSD.  The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus 
allows one to compare the two with each other directly.   
Keywords: Power spectral density, wavefront, optical surface specification, large optical surfaces 
 

1. INTRODUCTION 
Some space optical systems such as Terrestrial Planet Finder Coronagraph (TPF-C) require large optics with very high 
surface quality1-2. The developmental cycle of such an optical system includes, but is not limited to, the following two 
steps:  (i) Deriving requirements (or specifications) on the surface quality of individual optical components before they 
are fabricated and (ii) evaluating the quality of those components against the pre-determined specifications after they are 
fabricated.  One of the preferred metrics used for specifying surface roughness is the power spectral density (PSD).  It is 
computed from the amplitude of spatial frequency components present in the Fourier spectrum of the surface height of 
an optical component, and has been used for some time in optics mainly for specifying high spatial frequency 
characteristics of optical surfaces to quantify their scattering properties3-5.  More recently, an optical metric referred to as 
“PSD error” has started to be used by optical engineers to describe the quality of optical surfaces and wavefront in 
optical systems.  The surface height or surface roughness data can be obtained from measurements of the bidirectional 
reflectance distribution function, from surface profiles measured using an optical or mechanical profiler, or from surface 
height maps measured using an interferometer such as Zygo-interferometer.  This paper is about the processing of 2-
dimensional surface height data measured interferometrically. When an optic has a circular aperture, the PSD can be 
used to characterize the mid- and the high-spatial frequency components of its surface height.  In such a case, the low 
frequency surface error (or figure error) of the optic can be analyzed with Zernike polynomials.  If an optic has an 
irregularly shaped aperture, one must rely on the PSD analysis to characterize its surface quality since Zernike 
polynomials are an orthogonal set for circular apertures only.   
 
Several different approaches have been reported on how to calculate PSD from surface height measurements1,5-7.  
However, when trying to derive a PSD specification on a large space optic, we failed to find a reference that addresses 
the following two issues simultaneously: Deriving PSD requirements on an optic based on a PSD function and 
characterizing the same optic after it was made in terms of those pre-determined PSD specifications. This paper is 
intended to fill such a gap.  Specifically, we will provide a complete approach for specifying and evaluating the PSD 
characteristics of large optical surfaces.  We will propose a new method for converting a 2D-PSD into a 1D-PSD by 
azimuthally averaging the former.  We will show that the 1D-PSD calculated this way can be directly compared with the 
PSD function used to derive the original PSD specifications, and eliminates the need for variance-reducing procedures 
such as using windowing filters (such as Hann or Welch windows), zero-padding and averaging multiple subaperture 
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PSDs.  The key surface error metrics we chose to use in our specifications are low-order Zernikes, the band-limited RMS 
error of mid- and high-spatial frequency components and the exponent of an inverse power law of a PSD function. 

 

2. MATHEMATICAL DESCRIPTION 
2.1 Calculation of PSD from Surface Height Data 

In this subsection, we describe the mathematical model we have used for obtaining a 2D- PSD from surface height data.  
We will describe only the essential part of the basic PSD theory, and more detailed description can be found in other 
literature, see, for example, Ref. 7.  We provide both the integral and the digitized forms of the formulation whenever we 
see appropriate.  The fixed-length Fourier-transform of a surface height map ),( yxh  is defined as 
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where x  and y  are the surface position variables in the horizontal and the vertical directions, and u  and v  are the 
spatial frequency variables in the horizontal and the vertical directions, respectively.  In the following, we will also use a 

radial frequency variable ρ , which is defined as 22 vu +=ρ . The ℑ  symbol in Eq. (2) represents a 2-Dimensional 
Fast Fourier-Transform (FFT) routine.  We chose not to give the FFT expression explicitly here because nowadays 
everyone uses the built-in FFT routine included in various types of commercial software, such as the fft2.m function in 
MATLAB, to perform an FFT operation on a matrix.  The parameters a  and b  are the total width and the total height of 
the surface height map.  The 2D-PSD is defined as the squared amplitude per unit area of the spectrum of a surface 
height map.  Thus it can be expressed as 

 

22/

2/

2/

2/

2
),(1),(~1),( ∫ ∫

− −

==
b

b

a

a

dxdyyxh
ab

vuH
A

vuPSD , (3) 

 { } { }2
2

2
22

),(
)(

),()(),(~1),( nmnmnmnm yxh
MN

Ayxh
A

yxvuH
A

vuPSD ℑ=ℑ
ΔΔ

== . (4) 

Indices m  and n  take on values from 1 to M  and 1 to N , where M  and N  are the numbers of sample points in x  
and y , respectively. We have utilized the following relation in arriving at the last expression in Eq. (4): 
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As we can see from Eq. (4), the ),( nm vuPSD  has a unit of 22 )()( lengthlength . For large optics as in our case, one can 

choose 22 )()( mnm .  Other relationships among the various variables in Eq. (4) are 
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One of the quantities widely used in PSD specification is the root-mean-square (RMS) error, σ . It can be calculated 
either from the surface height ),( yxh  or from the 2D-PSD as follows: 
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This is a bandwidth limited RMS value of the PSD error, as the magnitude of the highest surface spatial frequency 
resolved in the measurement process is the Nyquist frequency xuc Δ= 2/1 or yvc Δ= 2/1 .  If the mean of ),( nm yxh  is 

removed before calculating 2σ  using Eq. (8), then the resultant 2σ  value corresponds to the mean-square roughness of 
the surface5.  Note that Eqs. (7) and (8) correspond to a general expression of Parseval’s theorem and can be used as a 
check on the validity of the methods used to calculate the 2D-PSD.  Note also that A/1  in the last expression of Eq. (8) 
can be replaced with ))(( vu ΔΔ  based on the relationships given in Eq. (6), where xMu Δ=Δ /1  and yNv Δ=Δ /1  are the 
data point intervals (or pixel widths) in the spatial frequency domain. 

In most cases, optical surfaces have circular clear apertures.  In such a case, the RMS value of the surface height 
),( nm yxh  needs to be calculated from only those data points inside its clear aperture.  That is, 
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where K is the total number of data points that satisfy Dyxr nmmn ≤+= 22 , D is the diameter of the clear aperture, and 
subscript “aper” means “aperture”.  For many applications, the location of the PSD error on the uv –plane is not 
important.  Thus, a PSD specification can be written in one dimension. So far a 1D-PSD has been obtained either by 
slicing the 2D-PSD along a particular axis, or by integrating the 2D-PSD along u - or v -axis or azimuthally1,7,8.  Here 
we propose an alternative approach: We average ),( nm vuPSD  azimuthally to obtain one PSD value from the data in 
every small annular region on the 2D-PSD map.  We will explain the advantage of this approach in the following 

section. We do this averaging in the following way.  (1) Express ),( nm vuPSD  as a function of 22
nmmn vu +=ρ  in the 

polar coordinates and obtain )( mnPSD ρ .  (2) Sort mnρ from minimum to maximum to obtain lρ  and )( lPSD ρ , where 
NMLl +== ,...,2,1 . (3) Divide LlMax ρρ =)( into 1−Q  intervals in a log-space with end points Qqq ,...,3,2  ,' =ρ .  

(4) Calculate the radially- or azimuthally-averaged 1−Q  pairs of qq P−ρ  data points, and set 11 P−ρ  to their values at 

the center of ),( nm vuPSD  map.  The qP  obtained this way is the 1D-PSD.  For example, assume the 5th interval 

satisfying 65 '' ρρρ <≤ l  has 100 pairs of )( ll PSD ρρ −  data points from 401=l  to 500=l .  Then the radially 
averaged 55 P−ρ  pair is obtained as  
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2.2 Synthesizing Surface Height Maps from a PSD Function 

As mentioned in the introduction, one needs to rely exclusively on synthesized surface heights or simulated PSD errors 
during the specification-derivation phase of an optical project.  We used the following Lorentzian equation as our PSD 
function1,4,9: 
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is a normalization factor, HPρ is the half-power frequency, and p  is the exponent of the inverse power-law.  We used a 
primed parameter name for PSD in Eq. (11) to distinguish it from that in Eq. (4).  That is, the PSD function in Eq. (11) is 
used for surface height synthesis, whereas the one in Eq. (4) is used for surface height analysis, and they are usually not 
the same as will be explained below.  The factor )/( 0

2
0 hAσ  in Eq. (10) is chosen such that the resultant surface height, 

),(' nm yxh , always has a RMS value of 0σ  when (i) both M and N are even integers (M=N and a=b in most cases) and 
(ii) ),(' nm yxh  is not multiplied by a circular mask defining the clear aperture of the corresponding optical surface to 
obtain ),( nm yxh .  That is, ),(' nm yxh  and ),( nm yxh  are related by 

 ),(),('),( mnmnmn yxmaskyxhyxh ×= , (13) 

where 1),( =mn yxmask  inside the clear aperture of the optical surface and 0),( =mn yxmask  otherwise. 

It is now straightforward to calculate ),(' nm yxh  from the ),(' nm vuPSD  in Eq. (11).  That is, based on what is described 
in Eq. (4), we have 
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where 1−ℑ  represents an inverse-FFT algorithm, such as the ifft2.m function in MATLAB, and ),( nm vuφ  is an anti-
symmetric, randomly-valued phase map satisfying πφπ ≤≤− ),( nm vu .  Because the ),( nm yxh  in Eq. (4) is real, its 

Fourier-transform has the following symmetry property: ),(~),(~
nmnm vuHvuH −−= ∗ , where “*” denotes complex-

conjugate.  Thus the anti-symmetric condition required on ),( nm vuφ  guarantees that the resulted surface height 
),(' nm yxh  is real.  The realization of such a ),( nm vuφ  matrix is also straightforward in MATLAB.  For example, one 

can obtain such a phase map by calculating the phase of the spectrum of ),( nm vur , an NM ×  random number matrix 
having either a uniform or a normal distribution.  We found that, if M=N=even integers, the center of ),( nm vuφ , or 

)0,0(φ , is located at n=m=N/2+1 (after shifting the zero-frequency component to the center of spectrum by using, for 
example, fftshift.m algorithm in MATLAB).  Also, 0)0,0( =φ  if ),( nm vur  has a uniform distribution, and πφ =)0,0(  if 
it has a normal distribution. 

It should be noted that the PSD error obtained from Eq. (11) does not compute phase information, so it does not specify 
a unique surface height or wavefront map.  Rather, it specifies a family of uncorrelated surface height maps.  For that 
reason, when determining the controllability of the PSD errors in an optical system using surface-deforming actuators10, 
we carry out wavefront control simulations on at least 50 realizations of PSD errors for each σ-value category to capture 
most of the possible distributions of surface height errors, and obtain before and after wavefront control RMS wavefront 
errors from the statistical averages of those quantities. 

 

3. NUMERICAL RESULTS 
In this section, we present several numerical examples on the synthesis and the analysis of PSD errors using 

m 1=Δ=Δ yNxM , 3=p , cyc/m 1=HPρ , nm 1000 =σ , 512== NM , and Q = 32, where “cyc” means “cycle”.  
Most people prefer to use (length)-1 for the unit of ρ , and (length)2(length)2 for the unit of PSD.  The former is the same 
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as “cyc/length”.  We sometimes encounter a unit of “cyc/aper”, meaning “cycle per aperture”.  As we know, aperture is 
always two-dimensional.  But in the case of “cyc/aper” it is used as a measure of the width (or height) of a square 
aperture.  This unit is sometimes more appealing, because “n cyc/aper” means n full-cycles of sinusoidal ripples across 
the clear aperture of an optical surface.  With our choice of parameters listed above, we have 1cyc/m = 1cyc/aper, 

,cyc/aper 256maxmax == vu  cyc/aper 1=HPρ , and cyc/aper 04.3622 maxmax == uρ , where the subscript “max” 
means “maximum”.  Using a similar notation, the unit of PSD can also be expressed as (length)2(aper)2 or simply 
(length)2A or λ2A, where A is the area of a square surface as defined in Eq. (5) and λ is the wavelength.  For example, in 
the last case, PSD = 10λ2A means PSD = (10 wave-square)× (surface area).  

3.1 General Cases  

We now present some numerical examples.  First, we examine the effect of a circular mask or a circular aperture on the 
PSD.  Figure 1(a) shows one realization of ),(' nm yxh obtained from Eq. (14), and Fig. 1(b) shows the corresponding 
PSD data.  As mentioned earlier, ),(' nm yxh  corresponds to a square clear aperture.  In Fig. 1(b), the 1D- truePSD curve 
is calculated from the ),(' nm vuPSD  defined in Eq. (11), 2D- calcPSD are the 2D-PSD data obtained from ),(' nm yxh  
using Eq. (4), and 1D- calcPSD  is the radial average of the 2D- calcPSD .  As we can see, both the 2D- calcPSD  and the 1D-

calcPSD data fall on top of the 1D- truePSD  curve in this case as expected.  Additional information is given about these 
figures in the figure caption. 

Figure 1. (a) One realization of ),(' nm yxh  from Eq. (14), where the black-circle indicates the boundary of circular mask 

),( nm yxmask  used in this study.  (b) Corresponding PSD data.  The value of HP00 / ρρ  is changed from 0 to 0.3 in 

part (b) to shorten the displayed length of the horizontal axis.  In this case, =σ 100nm and =mrσ 93.1nm, where the 

subscript “mr” means “mean-removed”.  The mrσ  is obtained from ),(' nm yxh  after removing its mean value. 

 

Figure 2(a) shows the PSD data obtained from ),( nm yxh  having a non-zero circular area defined by the black-circle in 
Fig. 1(a).  The resultant 2D- calcPSD  now consists of discrete data points scattered in the vicinity of the 1D- truePSD  
curve.  When we obtain ),(' nm yxh  from truePSD  first, then calcPSD  from ),(),('),( nmnmnm yxmaskyxhyxh ×= , the 

calcPSD  gives an RMS value different from that of truePSD  or 0σ .  In order to compare 2D- calcPSD  with 2D- truePSD , 
we multiply calcPSD  by a RMS scaling factor, rmsγ .  The rmsγ  is defined as  
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Figure 2. (a) Same as Fig. 1(b) except that these data were obtained from the masked surface height map ),( nm yxh  defined 

in Eq. (13).  The original surface height map ),(' nm yxh  is the same as in Fig. 1(a).  In this case, =aperσ 106.4nm and 

=mrσ 96.5nm, respectively.  The 2D- calcPSD  data were rescaled before plotting so that they have 0σσ = .  (b) The 

RMS bias biasσ corresponding to ),(' nm yxh  and ),( nm yxh , respectively.  The mean and the standard deviation 
(STD) of the blue-curve are 0.997 and 0.064, respectively.   

 

  

Figure 3. (a) Distributions of σ , aperσ and mrσ values for 100 ),( nm yxh  realizations.  (b) Mean values of )( mnrh  defined 

in Eq. (9).  “STD” means “standard deviation”.  

 

 
σ
σγ 0

rms = , (15)  

where σ is defined in Eq. (8).  As we can see from Fig. 2(a), the 1D- calcPSD  shows a characteristic very similar to that 
of the 1D- truePSD  curve.  This is one of the most important findings of this study.  That is, the scattering of the PSD 
data is caused in this simulated case only by the truncation of the surface height map to a circular non-zero area, but the 
radial average of these scattered PSD data still preserves the main characteristic of the true PSD function.  We have 
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=aperσ 106.4nm and =mrσ 96.5nm in this case, where mrσ  is the mean-removed version of aperσ .  Figure 2(b) shows 
the RMS bias1 defined as 

 truecalcbias /Bias RMS PSDPSD==σ . (16) 

In Fig. 2(b), the red and the blue curves were obtained from ),(' nm yxh  and ),(γ rms nm yxh , respectively.  What is shown 
here are the biasσ  values of the 1D-PSD.  The same calculation can be carried out on the 2D-PSD as well.  It should be 
noted that the 1D- biasσ  can be less than 1 everywhere when 0σσ < , that is, when the measured surface height RMS 
value is less than the specification.  For example, in the case of Fig. 2(a), re-scaling σ  to =σ 88.5nm makes 1bias ≤σ  
everywhere. 

As we can see from the results in Figs. 1 and 2, the PSD specification of an optical surface can be given in terms of the 
following 3 parameters: (i) The RMS value of the calcPSD , σ , relative to 0σ ; (ii) the exponent of the inverse power 
law, p, determined from the 1D-PSD curve; and (iii) the RMS bias, biasσ .  For example, one can specify that the 
measured surface height map must have 0σσ ≤ , specmeas pp ≥ , and 1bias ≤σ , where the subscripts “meas” and “spec” 

mean “measured” and “specified”, respectively.  As is seen in the above example, one always gets 0' σσ = , but aperσ  

can be larger than, equal to or smaller than 0σ  when deriving the PSD specifications based on surface height maps 
obtained from Eqs. (14) and (13).  In order to get a better understanding on the relationships among various RMS values, 
we calculated the σ , aperσ  and mrσ values of 100 PSD realizations obtained with =0σ 100nm.  The results are shown 

as histograms in Fig. 3(a).  Figure 3(b) shows the histogram of the mean values of the corresponding )( mnrh  explained 
in relation to Eq. (9) above.  

Now let us look at another example, as shown in Figs. 4.  In this case we used p = 2 to obtain truePSD , and obtained the 

calcPSD  data from a different realization of the PSD error using the same parameters as in Fig. 1.  We now have aperσ = 

96.0nm, and 1bias <σ  in regions where HPmn 3ρρ > .   

  

Figure 4. Same as Fig. 1 except that (i) truePSD  was obtained with p = 2; (ii) the calcPSD  was obtained from a different 

realization of ),(' nm yxh  with p = 3.  In this case, calcPSD has =aperσ 96.0nm and 1bias <σ  when HP3ρρ >mn . 
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3.2 Role of a Windowing Filter 

One of the preferred approaches used for reducing variance in the PSD data is to multiply a measured surface height map 
with a windowing filter, such as Hann or Welch window, in the spatial domain before calculating the 2D-PSD.  In this 
sub-section, we examine the effects of a Welch window.  A Welch window is defined as1 

 

  
Figure 5. (a) PSD data corresponding to the PSD realization shown in Fig. 4(a).  The both sets of 2D calcPSD  data were 

rescaled so that their σ  values are the same as 0σ .  (b) The corresponding biasσ  curves obtained from the 1D-PSD 
data. [Mean, STD] = [1.119, 0.166] for the red-curve and . [Mean, STD] = [1.016, 0.133] for the blue-curve. 

 

 
Figure 6. Histograms of biasσ  obtained from 100 different PSD realizations for each of the ∞=α  and the 8=α  cases, 

respectively.  The peak of the red-curve is at biasσ  = 0.975, and that of the blue-curve is at biasσ  = 0.925.  RMS( biasσ

-1) = 0.190 for the 1D- biasσ  with ∞=α , and RMS( biasσ -1) = 0.160 for the 1D- biasσ  with 8=α . 
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where mnr  is defined in Eq. (9), and maxx  and maxy  are the maximum values of mx  and ny  inside the surface height 
map clear aperture.  Detailed discussion of the above Welch window can be found in Ref. [1].  A Welch window index 
of 8=α  was found to represent a good compromise between smearing and leakage1 and we use that value in our 
simulations.  In order to compare the 2D- calcPSD  results of ),( nm yxh  and )(),( mnnm rwyxh ×  with 2D- truePSD , we 
rescaled the former two 2D-PSDs so that they have the same RMS value as that of 2D- truePSD . 

In Figs. 5(a) and 5(b), we compared the 1D- PSD profiles and the biasσ  values of two cases, ∞=α  and 8=α , 
respectively.  The former case corresponds to the surface height map that is not multiplied by the windowing filter.  The 

),( nm yxh  used in this simulation is the same as in Fig. 4(a).  Therefore, the green-curve in Fig. 5(a) is the same as the 
blue-curve in Fig. 4(b).  As is evident from Fig. 5(b) as well as the mean and STD values of the two curves given in the 
figure caption, the application of the Welch window improves the 1D- biasσ  values in this example, but such 
improvement is not significant. 

In order to gain better understanding about the role of the windowing filter, we repeated the above simulation for 100 
),( nm yxh  realizations for each of the ∞=α  and the 8=α  cases, respectively, and obtained the histograms of the biasσ  

values shown in Fig. 6.  In the cases of 2D-PSD, the histogram of the biasσ  values is narrower for the case of 8=α  than 
for the ∞=α as expected, but its peak is at biasσ  = 0.925, which is further away from the biasσ  = 1 point relative to the 
peak of the ∞=α  case, which is at biasσ  = 0.975.  In the cases of 1D-PSD, RMS( biasσ -1) = 0.190 for the ∞=α  case, 
and RMS( biasσ -1) = 0.160 for the 8=α .  That is, applying a windowing filter to the ),( nm yxh  data improves the biasσ  
values of the 2D-PSD as expected, but for 1D-PSD such improvement is again not significant.  This means that applying 
a Welch window to the ),( nm yxh  data in the current azimuthally-averaging method improves the PSD variance only 
marginally.  This is another important finding of this study. 

 

3.3 Role of Welch Overlapping Subapertures 

It was found that Welch Overlapping Sub-Aperture (WOSA) 2D-PSD calculation on a synthesized mid-spatial 
frequency only surface reduces the 2D-PSD error, defined as calccalctrue /|| PSDPSDPSDPSD −=Δ , by nearly an order 
of magnitude relative to that of the full-aperture PSD1.  In this sub-section, we examine whether or not the WOSA 2D-
PSD calculation improves the biasσ  calculated from the radially-averaged 1D-PSD.   

In our example, we divide the ),( nm yxh  map into 8 overlapping subapertures as shown in Fig. 7(a) first, where the full-
aperture ),( nm yxh  map is the same as in Fig. 4(a).  This pattern provides 95% areal coverage over the full circular 
aperture.  Then we calculate the subaperture 1D-PSDs shown in Fig. 7(b) using the same MATLAB code used to 
calculate the full aperture, radially-averaged 1D-PSD.  Again, we rescaled each 2D-PSD such that all of the 2D-PSDs 
have an RMS value same as that of the 2D- truePSD .  The WOSA 1D-PSD, shown as avrgPSD  in Fig. 8(a), was 

calculated from the average of the subaperture 1D-PSDs shown in Fig. 7(b).  Figure 8(b) shows the biasσ  curves 
obtained from the three curves shown in Fig. 8(a) using Eq. (16) with truePSD  as the denominator.  As we can see from 
this figure as well as the mean and the STD values of two biasσ  curves, the WOSA PSD calculation does not improve 
the biasσ  values in the current, radially-averaged 1D-PSD approach. 
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3.4 Effects of Low-Order Figure Errors on Radially-Averaged 1D-PSD 

We now look at the effects of low-order figure errors on the radially-averaged 1D-PSD.  Figure 9(a) shows a surface 
height map ),( nm yxz  calculated from Noll-order11 Zernike-polynomial coefficients Z5-Z10 whose values were listed in 
the figure caption.  Nothing is special about the Zernike coefficients used here; they are just one random realization.  
Figure 9(b) shows the corresponding 1D-PSDs.  The blue curve (Case 2) was obtained in the following way:  We 
rescaled the 2D- calcPSD  so that in the absence of ),( nm yxz  it has the same RMS value as that of 2D- truePSD .  Whereas 
the green curve (Case 3) corresponds to a case where the 2D- calcPSD  of ),( nm yxz + ),( nm yxh  , with a ),( nm yxh  map 
same as in Fig. 4(a), has the same RMS value as that of 2D- truePSD .  We can see from the blue-curve of Fig. 9(b) that 
the low-order figure errors leak into all of the frequency components in the PSD domain, and this is true even after the 
RMS value of the 2D- calcPSD  of ),( nm yxz + ),( nm yxh  is adjusted so that it has the same RMS value as that of 2D-

truePSD .  This point is more evident in Fig. 9(c), where the red-curve (Case 1) was calculated from the 1D- calcPSD  of 
),( nm yxh  only, the blue-curve (Case 2) from that of ),( nm yxz + ),( nm yxh  after re-scaling the corresponding 2D-PSD 

with rmsγ  of Case 1, and the green-curve (Case 3) from that of ),( nm yxz + ),( nm yxh  after re-scaling the corresponding 
2D-PSD with its own rmsγ  factor.  These results show that it is necessary to remove all of the low-order figure errors 
from ),( nm yxh  before carrying out the PSD calculation to estimate the mid- and the high-frequency PSD components 
accurately. 

 

  

Figure 7. (a) The overlapping 8-subaperture pattern overlaid on a ),( nm yxh  map.  This ),( nm yxh  map is the same as in 

Fig. 4(a).  (b) Radially averaged subaperture PSDs obtained from the 8 subaperture ),(γ rms nm yxh  maps shown in part 

(a).  The full-aperture 1D- calcPSD  is also included for comparison.  Only one subaperture calcPSD  is included in the 
figure legend. 

 

Proc. of SPIE Vol. 7390  73900L-10



10

'U

106

(a) PSD Profiles

10° 10 102

Normalized Radial Frequency
Hp

2

1.6

1.4

1.2

0.8

(b) RMS Bias

e-- biasfu11'
Mean = 1.12, STD = 0.17

e biasavrg'
Mean = 1.21, STD = 0.211.8

101 100 101 102
Normalized Radial Frequency / Hp

(a) z)ay) RMS S 1OOaa

c10

10

(b) PSD Profilas

10
Nomsaslizod Radial Froqooncy P /

(e) RMS Bias

10 10 10
Normalized Radial Frequency /

 

 

  

Figure 8. (a) Comparison of three radially averaged 1D-PSD curves, where avrgPSD is the average of 8 subaperture PSD 

curves shown in Fig. 7(b).  (b) The corresponding 1D- biasσ  curves, where fullbias )(σ  is obtained from calcPSD  and 

truePSD , and avrgbias )(σ  from avrgPSD  and truePSD  shown in part (a). 

 

 

Figure 9. (a) Surface height map ),( nm yxz  obtained from the following Zernike-polynomial (Noll-order) coefficients: z5=-
18.0, z6=-69.2, z7=5.2, z8=12.0, z9=-47.6, and z10=49.5nm.  These Zernike-polynomial coefficients correspond to one 
random realization.  (b) 1D-PSD profiles.  The ),( nm yxh  used in this simulation is the same as in Fig. 4(a).  Case 1 

was obtained from ),( nm yxh  by rescaling the corresponding 2D- calcPSD  with rms1γ  such that it has the same RMS 

value as that of 2D- truePSD , that is, 0σσ = .  Case 2 was obtained from ),( nm yxh + ),( nm yxz  by multiplying the 

resultant 2D- calcPSD  with rms1γ .  Case 3 was obtained from ),( nm yxh + ),( nm yxz  by multiplying the resultant 2D-

calcPSD  with its own rmsγ  such that its 0σσ = .  (c) The corresponding biasσ  curves.   

 

4. CONCLUSION 
The calculation of PSD errors corresponding to a surface height map always requires a rectangular or square surface 
height data matrix.  But in most real cases the surface height map is defined inside a circular aperture and its matrix 
elements outside that circular aperture are all filled with zeros.  We have shown by numerically evaluating the PSD 
errors of several synthesized surface height maps that such zero-elements of the surface height map by themselves only 
cause the scattering of the PSD data when plotted as a function of radial frequency.  To convert such scattered 2D-PSD 
data into a new set of smoothly-varying 1D-PSD that can be directly compared with a PSD function used to derive PSD 
specifications, we proposed a new method: Obtaining 1D-PSD from the radial average of the scattered 2D-PSD.  We 
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have shown that this approach also eliminates the need for existing variance-reducing methods, such as applying a 
windowing filter to the surface height map before the calculation of its PSD, as well as for dividing a surface height map 
into several overlapping subapertures, calculating the individual 2D-PSDs, and then averaging those individual PSDs to 
obtain the full-aperture PSD.  We have also shown that it is necessary to remove all of the low-order figure errors from 
the surface height map before carrying out the PSD calculation to estimate the mid- and the high-frequency PSD 
components accurately.  We have tried to provide a set of complete and easy-to-use formulations for the calculation of 
the PSD from a 2D surface height map, such as the one measured interferometrically, as well as for the synthesis of 
surface height maps from a PSD function needed in the process of deriving PSD requirements.  We expect that this paper 
will serve as a valuable reference for the PSD analysis of optical surfaces, especially for beginners in this field. 
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